Pearson-Korrelationskoeffizient in SPSS berechnen

von | Jul 8, 2020 | Korrelation

Ziel des Pearson-Korrelationskoeffizienten in SPSS

Der Korrelationskoeffizient nach Pearson bzw. Bravais-Pearson hat das Ziel einen ungerichteten Zusammenhang zwischen zwei metrischen Variablen zu untersuchen. Er zeigt entweder einen positiven Zusammenhang, einen negativen Zusammenhang oder keinen Zusammenhang. In der Nullhypothese geht er von keinem Zusammenhang aus.

 

Voraussetzungen des Pearson-Korrelationskoeffizienten in SPSS

  • zwei metrisch skalierte Variablen, im Zweifel kann auch eine Korrelation nach Spearman gerechnet werden.
  • bivariate Normalverteilung
  • Häufig genannt: Linearität – gerade das untersucht man mit der Korrelation nach Pearson aber ohnehin

Sind die Voraussetzungen nicht erfüllt und ihr wollte dennoch korrelieren, schaut im Beitrag zur richtigen Wahl des Korrelationskoeffizienten nach Alternativen.

 

Vorgehen im Detail in folgendem Video meines YouTube-Kanals

Dieses Video ansehen auf YouTube.

 

Voraussetzungsprüfung für den Pearson-Korrelationskoeffizienten

Metrische Variablen

Metrische Variablen sind daran zu erkennen, dass sie in SPSS das kleine Lineal als Messniveau ausgewählt haben. Wenn man nicht sicher ist, ob tatsächlich ein metrisches Messniveau der Variable vorliegt, sollte man prüfen, ob die Abstände zwischen den Ausprägungen gleiche Abstände haben und diese auch als solche interpretiert werden können. Variablen wie Größe, Gewicht, € usw. erfüllen dieses Kriterium. Es ist häufig auch zulässig Skalen, die sich aus mehreren Items zusammensetzen (z.B. via Mittelwert), als quasi-metrisch einzustufen und damit eine Korrelation nach Pearson zu rechnen.  

 

Bivariate Normalverteilung

Bivariate Normalverteilung (auch zweidimensionale Normalverteilung) beschreibt eine Normalverteilung der einen Variable für jeden Wert der anderen Variable. In SPSS kann dies allerdings nicht geprüft werden, obwohl selbst im SPSS-Manual von bivariater Normalverteilung die Rede ist. Behelfsweise kann man univariate Normalverteilungen der beiden Variablen prüfen. Hierzu reicht es über Analysieren -> Deskriptive Statistik -> Explorative Datenanalyse zu gehen und unter Diagramme einen Haken bei Histogramm zu setzen und sich dies für die beiden zu korrelierenden Variablen ausgeben zu lassen. Erkennt man hier in etwa Normalverteilung kann man mit der eigentlichen Korrelation nach Pearson fortfahren.  

 

Durchführung der Korrelation nach Pearson in SPSS

Die Korrelation nach Pearson ist aufzurufen über Analyse -> Korrelation -> Bivariat. Die zu korrelienderen Variablen sind in das Feld Variablen zu übertragen. Unter Korrelationskoeffizienten stehen Pearson, Kendall-Tau-b und Spearman zur Wahl. Entsprechend ist hier Pearson auszuwählen. Im Beispiel korreliere ich die beiden Variablen „Gewicht in kg“ und „Größe in m“. Weitere Einstellungen nehme ich nicht vor und bestätige die Berechnung mit OK.

Hinweis: Es können natürlich viel mehr Variablen miteinander korreliert werden. Meist macht man das im Rahmen der Multikollinearitätsprüfung. Pauschal Variablen miteinander zu korrelieren – z.B. im Rahmen einer Regression – ist allerdings nicht nötig. Im Gegenteil, Korrelation ist keine notwendige Voraussetzung für Kausalität. Unter dem Begriff der Scheinkausalität bzw. „Cum hoc ergo propter hoc“ wird dies in der Wissenschaft beschrieben.

Pearson Korrelation SPSS

 

Interpretation der Ergebnisse der Korrelation nach Pearson in SPSS

Pearson Korrelation SPSS

Die zu interpretierenden Ergebnistabelle ist aufgrund nur zweier korrelierter Variablen recht übersichtlich. Generell gilt, dass diese Tabelle stets alle Variablen in den Zeilen und Spalten aufführt und somit auch symmetrisch aufgebaut ist. Dass Gewicht und Größe jeweils mit sich selbst perfekt korrelieren, dürfte klar sein und bedarf keiner Interpretation. Vielmehr interessiert in dieser Tabelle der Wert rechts oben oder links unten. Dieser beschreibt die Korrelation nach Pearson von Gewicht und Größe und hat einen Wert von r = 0,669.

Er ist zudem hoch signifikant. SPSS gibt eine gerundete Signifikanz von p = 0,000 an. Im Text schreibt man in einem solchen Fall p < 0,001, da eine Signifikanz von 0 nicht existieren kann. Hat man also eine Signifikanz von unter 0,05, verwirft man die Nullhypothese, dass kein Zusammenhang bzw. keine Korrelation zwischen den Variablen besteht.

Da r >0, geht man hier von einer positiven Korrelation, also einem positiven Zusammenhang von Größe und Gewicht aus. Das ist auch nachvollziehbar, da große Menschen zumeist schwerer sind bzw. schwerere Menschen häufig auch größer sind – Ausnahmen bestätigen die Regel. Da die Irrtumswahrscheinlichkeit hierfür mit einer Signifikanz unter der typischen Grenze von 0,05 liegt, geht man zusätzlich von einem statistisch signifikanten Zusammenhang aus.

Zusammenfassend kann mittels der Pearson-Korrelation hier ein statistisch signifikanter positiver Zusammenhang zwischen Größe und Gewicht beobachtet werden.

Achtung: Wenn bereits eine Wirkungsvermutung vor dem Test existiert – die plausible Annahme, dass größere Menschen schwerer sind bzw. umgekehrt schwerere Menschen größer sind – dann würde man 1-seitig testen. Hierzu darf die Signifikanz halbiert werden und erneut mit dem Niveau von 0,05 verglichen werden. In diesem Falle ändert sich entsprechend nichts an der Aussage der Verwerfung der Nullhypothese.

 

Ermittlung der Effektstärke des Pearson-Korrelationskoeffizienten

Die Effektstärke ist im Rahmen der Korrelation der Korrelationskoeffizient r selbst. Laut Cohen: Statistical Power Analysis for the Behavioral Sciences (1988), S. 79-81 sind die Effektgrenzen 0,1-0,3 (schwach), 0,3-0,5 (mittel) und größer 0,5 (stark).

Im vorliegenden Beispiel ist die Effektstärke mit 0,669>0,5 und damit stark. Es handelt sich also um eine starke Korrelation zwischen Gewicht und Größe.

 

Tipp zum Schluss

Findest du die Tabellen von SPSS hässlich? Dann schau dir mal an, wie man mit wenigen Klicks die Tabellen in SPSS im APA-Standard ausgeben lassen kann.

 

 

Hat dir der Beitrag geholfen?

Dann würde ich mich über eine kleine Spende freuen, die es mir erlaubt, weiterhin kostenfreie Inhalte zu veröffentlichen.

Vielen Dank und viel Erfolg!

Über mich

Björn Walther

Excel- und SPSS-Experte

YouTube-Kanal

Excel Online-Kurs

YouTube-Kanal