Einstichproben t-Test in R rechnen

von | Apr 14, 2020 | Mittelwertvergleich, R, t-Test

Ziel des Einstichproben t-Test in R

Der Einstichproben t-Test prüft, ob der Mittelwert eines beliebigen Merkmals (z.B. der Intelligenzquotient) einer Stichprobe  dem Mittelwert einer Grundgesamtheit gleich bzw. in etwa ähnlich ist. Ist die eine Schulklasse also in etwa so intelligent wie die Grundgesamtheit? In diesem Artikel zeige ich, wie man den Einstichproben t-Test in R rechnet und die Ergebnisse interpretiert. Kein R? Hier geht es zum Artikel in Excel mit Beispielberechnung.

Voraussetzungen des Einstichproben t-Test in R

  • Man braucht lediglich eine metrisch, also intervallskalierte Variable. Diese sollte zudem in etwa normalverteilt sein. Wie man eine Variable auf Normalverteilung prüft, zeigt dieser Artikel. Aus Vereinfachungsgründen zeige ich dies in diesem Artikel nicht und gehe schlicht von Normalverteilung aus.
  • Die Fälle sollten voneinander unabhängig sein.
  • Es braucht zudem einen vermuteten Mittelwert. Dieser ergibt sich aus der Grundgesamtheit, bisherigen Erfahrungen oder schlicht (theoretisch hergeleiteten) Vermutungen.

Dieses Video ansehen auf YouTube.
Fragen können unter dem verlinkten Video gerne auf YouTube gestellt werden.  

 

Durchführung des Einstichproben t-Test in R – ein Beispiel

Nullhypothese

Die Nullhyopthese beim Einstichproben t-Test geht stets von Gleichheit der Mittelwerte von Stichprobe und Grundgesamtheit aus.

Ihr könnt bei diesem Test einseitig und zweiseitig testen. Einseitig heißt lediglich, dass ihr eine konkrete Vermutung habt, dass der Stichprobenmittelwert kleiner oder größer ist als der Mittelwert der Grundgesamtheit. Standardmäßig wird allerdings zweiseitig getestet, das heißt ihr vermutet einen Unterschied, wisst aber nicht, ob der Mittelwert der Stichprobe größer oder kleiner als der Mittelwert der Grundgesamtheit ist.  

t-Statistik

Die Berechnung der T-Statistik ist die Basis, die folgende Formel hat:

    \[ T = \sqrt{n}\frac{\overline{x}-\mu_0}{S} \]

Zum Glück muss man das in R nicht alles nachbauen und kann direkt die Funktion t.test() verwenden.  

 

Code in R

Nach dem Einlesen eurer Daten verwendet ihr die Funktion t.test():

t.test(x, mu, alternative)

Die Funktion t.test() hat noch viele weitere Attribute, die drei obigen sind aber die wichtigsten. $x$ ist eure Testvariable. Bei mir ist das der IQ. mu ($\mu$) ist der vermutete Mittelwert, also der Test gegen den ihr eure Testvariable auf Unterschied prüfen möchtet. „alternative“ gibt mir an, ob ein- oder zweiseitig getestet wird. Dazu komme ich jetzt.  

 

Beispielcode in R – zweiseitiger Test

t.test(IQ, 105)

Wie zu erkennen ist, habe ich x durch den IQ ersetzt und für mu die Zahl 105 eingesetzt. 105 ist der durchschnittliche IQ in Deutschland. Ein zweiseitiger Test bedeutet, ich weiß im Vorfeld nicht, ob mein Mittelwert der Stichprobe ober- oder unterhalb des vermuteten Mittelwertes (der Grundgesamtheit) liegt. Das ist die typische Testung und auch der Grund, warum „alternative“ hier weggelassen werden kann.  

 

Beispielcode in R – einseitiger Test

Habt ihr eine konkrete Vermutung, ob der Mittelwert der Testvariable größer als der vermutete Wert ist, testet ihr demzufolge einseitig. Dazu fügt ihr dem Code noch das Argument „alternative = c(„greater“)“ hinzu.

t.test(IQ, 105, alternative = c(“greater“))

  Wenn ihr jedoch davon ausgeht, dass eure Testvariable kleiner als der vermutete Wert ist, lautet das Argument „alternative = c(“less“)“.

t.test(IQ, 105, alternative = c(“less“))

 

Interpretation der Ergebnisse des Einstichproben t-Test in R

Interpretation des zweiseitigen t-Tests

One Sample t-test

data: IQ

t = 2.582, df = 50, p-value = 0.0128

alternative hypothesis: true mean is not equal to 105

95 percent confidence interval: 106.0712 113.5758

sample estimates: mean of x 109.8235

 

Aus diesem Wust an Zahlen interessiert an und für sich nur sehr weniges.

  • Zunächst steht ganz unten der tatsächliche Mittelwert der Variable IQ (109,8235).
  • Dieser wird gegen den Wert 105 getestet. Das erkennt man hieran: „alternative hypothesis: true mean is not equal to 105“. Der wahre Mittelwert ist ungleich 105 wird hier also getestet.
  • Der p-Wert ist mit 0,0128 unter dem typischen Alphafehler von 0,05. Man verwirft also die Nullhypothese von Gleichheit des Mittelwertes der Testvariable (IQ) zur vermuteten 105. Die Alternativhypothese „true mean is not equal to 105“ wird angenommen.
  • Berichtet man die Ergebnisse, gibt man zusätzlich noch die t-Statistik (2,582) sowie die Freiheitsgrade (df=50) zusätzlich zum p-Wert an.

 

Interpretation des einseitigen t-Tests

Hier wurde der Einstichproben t-Test einseitig gerechnet. Und zwar war die Vermutung, dass der Testwert 109,8235 größer als der vermutete Wert 105 ist. Eigentlich offensichtlich, aber um für zufällige Abweichungen zu kontrollieren, braucht es den t-Test.

One Sample t-test

data: IQ

t = 2.582, df = 50, p-value = 0.0064

alternative hypothesis: true mean is greater than 105

95 percent confidence interval: 106.6927 Inf

sample estimates:

mean of x 109.8235

 

Der einseitige t-Test ist eigentlich analog zum zweiseitigen t-Test zu interpretieren:

  • Erneut steht ganz unten der tatsächliche Mittelwert der Variable IQ (109,8235).
  • Dieser wird gegen den Wert 105 getestet. Allerdings steht in der Nullhypothese deutlich, dass der Testwert größer als 105 ist und hierfür getestet wird: „alternative hypothesis: true mean is greater 105“.
  • Der p-Wert ist mit 0,0064 unter dem typischen Alphafehler von 0,05. Man verwirft also die Nullhypothese von Gleichheit des Mittelwertes der Testvariable (IQ) zur vermuteten 105. Die Alternativhypothese „true mean is greater than105“ wird angenommen.
  • Der p-Wert beim einseitigen Test ist stets halb so groß wie beim zweiseitigen Test – vorausgesetzt man hat die korrekte Alternativhypothese (greater, less) formuliert.
  • Berichtet man die Ergebnisse, gibt man zusätzlich noch die t-Statistik (2,582) sowie die Freiheitsgrade (df=50) zusätzlich zum p-Wert an.

 

  Weitere nützliche Tutorials findest du auf meinem YouTube-Kanal.

 

Hat dir der Beitrag geholfen?

Dann würde ich mich über eine kleine Spende freuen, die es mir erlaubt, weiterhin kostenfreie Inhalte zu veröffentlichen.

Vielen Dank und viel Erfolg!

Über mich

Björn Walther

Excel- und SPSS-Experte

YouTube-Kanal

Excel Online-Kurs

YouTube-Kanal